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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1359

ATR-WATER ANALOGY AND THE STUDY OF HYDRAULIC MDDEIS*i

By Giulio Supino
SUMMARY

The author first sets forth some observations about the theory of
models. Then he establishes certain general criteria for the construc-
tion of dynamically similer models in water and in air, through refer-
ence to the perfect fluid equations and to the ones pertaining to viscous
flow. It is, in addition, pointed out that there are more cases in which
the analogy is possible than is commonly supposed.

ATR-WATER ANALOGY AND THE STUDY OF HYDRAULIC MODELS

1. The use in model experiments of a fluid which is different from
that of the original one has been known for some time. One is reminded
in this connection that tests are made in water of bodies which are
designed to operate in air (dirigibles, airplanes, railway cars, etc.),
and the first investigations in this direction were carried out by G. A.

Crocco in 19062; and it is recalled that tests are made in air (that is,
in wind tunnels) on configurations which are designed to operate in

*u1a Simi1itudine Aria-Acqua e lo Studio dei Modelli Idraulieci."
L'Energia Elettrica (Milano), vol. XXVIII, no. 11, Nov. 1951.

l‘I‘heoretical background for experiments now going on at the
Hydraulics Iaboratory of the University of Bologna, sponsored by the
ANIDEL (National Association of Electric Power Companies ).

2Tn particular, one should consult:

Crocco: Dynamics of Dirigible Balloons (Dinamica degli Aerostati
Dirigibili), Bulletin of the Italian Aeronautics Society
(Bollettino dells Societa Aeronautica Italians),

April 1907.

B. Finzi Contini: Concerning an Experimental Method for the Study
of Car Models (Su di un Metodo Sperimentale per lo Studio
dei Modelli di Veicoli), The Engineer (L'Ingegnere),
1935.

G. Corbellini: The engineering of rail transportation (Tecnica
dei Trasporti su Rotaia). Rome, 1941, pp. 210-232.
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water, or are otherwise subjected to hydraulic loads3. Within this frame
of reference the Hydraulics laboratory of the University of Bologna has
in progress the setting up of the necessary mechanical devices for the
carrying out of certain research work, and this paper, in the form of a
preview, is intended to present some facets of the possibllities inherent
in experimentation that can be conducted with these two fluids.

2. Some considerations of a general nature are to be discussed
first of all. The theory of mechanical similitude can be developed fram
two different points of view. The first of these ways of looking at the
question is of an inductive sort, and it is based on the n-~theorem (of
Vaschy—Riabuscinski-Buckingham), while the second viewpoint is deductive
in nature and stems from the differential equations which govern the
phenomenon.

Since the import of the two methods of approach each differs from
the other, it is worth while to review them briefly with respect, how-
ever, merely to the hydraulic problem. The expression of the n-theorem
is then as follows:

"Iet us assume that the following physical quantities are involved
in the hydraulic phenomena under consideration:

P density of the fluid

1 linear dimension which characterizes the body whose behavior
is to be scrutinized

U average velocity of the fluid

£ force (drag of the moving fluld on & given length of tube,

thrust of a jet against a restraining wall or of a stream
ageinst an immersed body, drag of the fluid resisting the
motion of an immersed or floating body)

3Tbsts made in air, in a pressure tunnel, to study liquid flows may
be found in:

G. Remenieras: Prédetermination de la perte de charge dans une
canalisation d'eau sous pression a partir de celle
mesurée sur le méme canalisation parcourue par de l'air.
Third Congress of the AIRH, Grenoble 1949, vol. III,
no. 2.

P. Bourguignon: Prédetermination de 1la perte de charge dens une
canalisation d'eau sous pression a partir de celle
mesurde sur le méme canalisation parcourue par de
1'air. Contrdle de la validité de le méthode sur la
galerie d'amenée R.G.de 1'usine Hydro-electrique du Pont-
Escoffier. Tbid. III.O.
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g acceleration of gravity
1) absolute viscosity of the fluid
rg nondimensional parameter or group of parameters which char-

acterize the roughness of the walls

To nondimensional parameter or group of parameters which char-
acterize the shape of the body

The connection between these quantities is to be expressed by a
~funetion of the form

(P(p)z;ny)g;querf) =0 (l)

Because this function is not to undergo any modification when the
dimensional units are altered, then the unknown quantities will have to
appear regrouped in such a way as to constitute pure numbers. Now all
the distinct pure numbers which it is possible to construct through use

of the quantities p, 1, U, f, g, u (of course rg and re are

already pure numbers) are the following

Ne = pZzU'z
1 t
UZ
Ny = = (Froude's Number )
g
9)
N3 = Ll (Reynolds' Number )
M

Thus in place of equation (1) one may write
q)l(Nl,Nz,N3,rf,rs) =0 (2)

This relationship is often written in a more simple manner as a
result of the fact that it is possible to rearrange it so that one of
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the unknown quantities is given explicitly; for example, in the case of
the force f, we have that the relationship

_ 202
f = pl2U w(Nz,N3,rf,rs) (2")
holds."

Suppose now that it is required that some hydraulic phenomenon is
to be studied by means of a model. In addition to the geometric condi-
tions of similitude

= 1
I‘S I‘S

(3)
Te = Tp

which must be satisfied (where primes refer to the quantities related to
the model), it is also necessary to specify the further conditions of
mechanical similarity given by

> (%)

and

1207 1182
T £

If the density of the fluld is p and its viscosity p in the
"basic" or original system, and if the model is to be tested in a fluid
for which the density and viscosity are to be p' and u', respectively,
the preceding conditions (4) constitute a system of relationships in the
unknowns

1 U f
T T and —
1! U !
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Let us denote by v = % the kinematic viscosity of the basic fluid,

and likewise let V' denote the same quantity for the model system, then
by means of equation (&) the following are obtained

Fe e

o " (%)1/3 -3 o (5)
v 2

=~ (56 =G

where k has been set in place of -vl’-

In the case of the other mechanical parameters the following reduc-
tion ratios apply

time o 1/3
tl
acceleration -2"- = 1
a
volume flow EQ'- = k5/3
pressure _p_' = (—pT)kz/3
P P
static head il'l" = ¥2/3
momentum 31_)(_11_ = (L k7/ 3
m'/\U' P
work -]-"-'- = (£ k8/ 3
L' pv
power —E- = (-p—)k7/3
P' pl

angular velocity f? = k'l/ 3
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If air is selected as the fluid to be used in the study of a
hydraulic phenomenon, the value of the ratio between the kinematic
viscosities of water and air, v/v', cannot range out of too extensive
bounds. In fact, for ordinary temperatures the value of this ratio, as
a function of temperature in the two fluids, varies from a maximum of
0.13 at 0° C to a minimum of 0.05 at 30° C, as may be verified by refer-

ence to figure 1.%

On the other hand, if one uses, as a basis of comparison, the kine-
matic viscosity of water at 150, the ratio between the viscosities can
at most vary from the value

v of water at 15° C _ 1.1k X 10-6 - 0.0838
v' of air at 0° ¢  1.36 x 10~
for air at a temperature of 0° C to the value
v of water at 15° ¢ _ 1.1k x 10~°
= = 0.0695

v' of air at 30° C  1.64 x 107

for air at a temperature of 30o C.

By use of equation (5), it is seen that the corresponding values of
the ratio I/Z' are, respectively, 0.187 and 0.169, to conform with these
Just-mentioned values of the ratio V/V'. In the first case, that is,
the scale of the model will have to be 5.35 times larger than that of
the original, while in the second case it will have to be 5.90 times
greater.

It is clear that if the average temperature of the flow in which
the original body is to operate as a water model is different from this
15°, other values for the 1/1' ratio will be obtained for the range of
air temperatures under which the experimentation is done; however, these
values will not deviate greatly from the limiting values Just adduced
above.

One may thus conclude that it will be useful to employ dimensional
experiments with models in.air to large scale whenever the original

*The NACA reviewer suggests that the exponents of 10 in the values
of kinematic viscosity for water and air should be 5 and 4, respectively;
however, the ratios of these values are unaffected.
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setup in water is of such small size that it would not permit an accu-
rate examination of its behavior.

On this account dimensional experiments can be employed for the
study of flow from vents, from small valves, etc. where the influence
of gravity and viscosity of the fluid can be taken ihto account at the
same time.

This mode of approach to the subject of mechanical similitude has,
as mentioned earlier, an inductive aspect, that is, it is substantiated
only provided that the initial hypothesis is true that the hydraulic
phenomenon under examination depends only on the physical quantities
enumerated in equation (1).

When all these quantities (and only these) come into play in more
diverse theories, then I have already demonstrated earlier that the
analogy between model and original is common to all the theories thus
constructed, and thus the model test and the transfer from model to
original lead to a result which, in & certain sense, does not depend

upon these theories®. On the other hand equations (3) and (4) are not

amenable to any further polishing up; i.e., once the dependence of the
function wl on N;, No and N3, re and rg 1is established, no

further importence can be attached to one or the other of these numbers,
nor can any criterion be set up for preferring one over the other. The
elimination of the quantities which may be considered to be superfluous
has to come about through the initiasl supposition that the phenomenon
does not depend on them. If one or more quantities are cut out then
also one or more of the pure numbers among the group found previously
will be lacking. For example, if one is concerned with a perfect fluid
(for which © = 0), then the Reynolds number would be missing.

If the liquid is to be uninfluenced by the force of gravity, then
the Froude number would be missing and if one should like to forget about
the density, p, then the numbers N; and N3 would be lacking. In

this case, the number N, defined as Wy = E%H would be inserted in-
place of N; and N3, in addition to having N, still involved.
3. It now remains to ask whether it 1s possible to extend the range

of usefulness of the air experiments by reducing the dimensions of the
model. The answer is in the affirmstive, because it is not actually

lLG. Supino: On dimensional analysis and the theory of models
(Su 1'analisi dimensionale e la teoria dei modelli) Two notes in the
"Rendiconti della Accademia Nazionale dei Lincei", Sept. 1, 1947.
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necessary to keép in the Froude number, and upon dropping the pure num-
ber N5, a much greater liberty of choice is vouchsafed. But in order

to study this, it is necessary to study the hydraulic analogy from the
deductive point of view, as applied to a particular one of the analogies.

Iet us focus our attention, for example, on the equations describing
the behavior of an incompressible viscous liquid (that is, on the Navier
equations).

These Navier equations are constituted of:
(a) ™e equations of motion:

In addition to the symbols already defined in section 2, the fol-
lowing nomenclature 1s introduced at this point. The local components
of the forces acting on a unit mass are denoted as X, Y, Z which
are components directed along the corresponding coordinate axes,
respectively; p = pressure, K = viscosity of the liquid, p = density,
—, and %% are the "materiasl" derivatives of the velocity
components, that is to say, they are components of the acceleration of
a little particle of liquid which, at the time t, is located at the
point with coordinates x, y, and z. The symbol A stands for the
operator

a2 . a2 . a2
axz ayZ azz

Then the equation of motion is

-
pX - éE + KL Au = 93
ax at
pY-@+uAv=od—v > (6)
dy at
pZ - ég + L AW = p dw
oz dt
~r
(b) The equation of continuity
ow
BT Hoo )

&x Jy Oz
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(¢) The boundary conditions

In reference to these, there are no uncertainties introduced here
in the case of flow along walls, because 1t is obvious that the liquid
sticks to them, and thus its velocity is equal to that of the wall, and
also it is seen that the protuberances are reduced in the same proportion
as required by the geometric proportionality factor. The question of
"free surfaces" will, on the other hand, be considered later.

It may be deduced directly from equations (6), that is to say, with-
out reliance upon the n-theorem) what the conditions are for similitude
to hold in_ the gravitational field.

Let us consider, therefore, the third of equations (6), applying to
the original setup. lLet the z-axis be directed upwards, whence 7 = -g;
then we have

Iet p', p', z', etc. be the magnitudes related to the model conditions;
then in this case we have

] T t
R N M NI
p' Az p' at®
But it is true that
v
L '=9% vt o= —
P e, P P, X

[}
it

XT—lW, pwt = A I

b
]

z' rZ,

so that upon comparison of the equation relating to the original condi-
tions to that relative to the model, it follows that

k18 XT-

because g remains unchanged in the two cases.
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2

The condition that AT ~ = 1 1s equivalent to the one denoted by

2
Y_ = const. (Froude's no. required to remain unchanged).

The condition that kAT = 1 when combined with the preceding condi-
tion leads one to write

or(ar?) = w2l =1

and this corresponds to the Reynolds number condition.

Finally, the condition %} = 1 when combined with the condition

A2 =1 and by meking use of the relationship that = = fk'z leads
one to write

L

2
that is to say, we have p l}?‘ = const.

It must be remembered that the law of geometric similtiude must be
upheld, and thus equations (3) are valid. Consequently we are brought
back to equations (4). It is evident that equation (7) and the condi-
tions at the wall do not impose any other restrictions.

4. The preceding result does not inform us of anything that could
not also be derived from the n-theorem. But considering that this time
we have within our grasp the very equations with respect to which we want
to deduce the law of similitude, then it is thus possible to intimate
that a deeper study of these equations leads to a reduction, in certain
cases, of the number of imposed conditions. A very simple trick way of
doing this 1s as follows, which 1s a well-known device, at least theo-
retically (compare, for example, p. 34 of Pistolesi's Aerodinamica).

let us return to examination of equation (6). Ilet the pressure p
be divided up into two portions so that p = P, + Py- After doing this,

we may write the equations of motion which apply in a gravity affected
field as
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_a(p1+Pz)+uAu=pg A
x dt

d(p, + P

- _i_l___—gl + LAY = o EI > (8)
oy dt
o(p, + P

-7-._(_1_6.2_._2_)+|,1szp.g_:.

If we now substitute for P, the value P, = =72, then we shall wind up
with nothing more than the equations

dp 7
2, _ _du
- —— uAu_ ——
Ix pdt
apz dv

- — + LAV = D'EE ? (9)

a-pz dw
% MY TeR

~/

and the law of similitude can be deduced by stipulating in these relation-
ships that it must hold true that

BA 1

but without the qualification that these three ratios must necessarily
be equal to unity.
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The solution that comes most readily to mind consists therefore in
selecting the Froude number in a purely arbitrary manner and in demanding
that the following two relationships hold

-1

M:l and sz = 1

bld

that is to say, that the N; and N3 parameters should remain constant;
s0 that one may write

wl(Nl’Ns’rs’rf> =0

If the function @1 can be cast into explicit form (let us suppose
it is the drag force which we want to work with) then we get

= pleZW(N3,rf,rs)

which is just a way of saying that the drag force, f, turns out to be
a8 function solely of the Reynolds number and of the shape parameters r

5
and re V.

_Nevertheless the experimental facts will have to be handled in the
following way. First carry out the tests of a hydraulic phenomenon,
directly based on the Navier equations, by means of a model whose dimen-
sions are to be obtained from those of the original configuration through

STt should be remarked that this trick also is of interest from a
conceptual standpoint in that it serves to sever the drag measured in
tubes from the Froude number. In fact, let us write down the expression
for the change in the drag in progressing from one point in a tube to

another as f = 7113; then 1t follows that

where the symbol X(N3,rs) denotes the nondimensional function which

appears conventionally in all the formulae relating to drag in cylindrical
tubes.
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application of the premise that the Reynolds number is to remain con-
stant. After doing this experimentation, the next step will be to sub-
tract the value pl' = -y'z' from the total gross pressure measured at

each point of the model. It is worth pointing out that the value of pl'
is known at every point because the shape of the model is defined.

Thus one will have at hand the quantities pz' = p' - pl', and from
these values the law of similarity will permit the determination of pz 6.

The pressure exlsting at the corresponding point on the original body will
be given by the relation: p = Py - 7Z.

In all those cases where the wvalue of the pressure is of no conse-
quence to the experiment, no corrections of any sort are called for.

It may be further remarked that if the viscosity has but a minute
influence on the hydraulic phenomenon under study, then the equations
which govern the flow are those of & perfect fluid, and upon subjecting
these equations to the same trick, one will arrive at the conclusion that
the law of similarity is completely at our arbitrary disposal (provided
that the pressures are computed by means of the correction factors pre-
sented above, after the similarity ratios have been selected and fixed).

5. Even when one takes into account the viscosity and stipulates
therefore the constancy of the Reynolds number, the artifice being
explolted here renders it possible for the dimensions of the model to

be reduced from those applying to the original case. Set k = 3%,

A= é%- (the symbol A used here is the reciprocal of the one employed
in the previous section) and let o = %%.

When this is done it, of necessity, will follow that %} = 1. Now
if k lies in the range 0.07 < k $0.08 and if )\ 1s taken as 10,
then it will be possible to obtain the desired result, namely, a reduc-
tion in the size of the model to 1/10 of the original, by stipulating

7_ -
that o should equal 1000 to 1600° hat 1s, by demanding that the model

be tested at velocities of from 140 to 125 times those experienced by
the original configuration.

6

pl - _ 2 _2 _ pl
From the ratio =— = x = BA"T it follows that Py = .

P szn'z
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This condition is certainly quite severe, but it is much less so
than the one which might have been imagined at first thought. Suffice
it to say, in this regard, that velocities in excess of 100 m/sec can

be reached and surpassed in aerodynamic wind tunnels’.

On the other hand, when the Reynolds number has a large value it
is not necessary to insist that the two Reynolds numbers applying to
the original and to the model be definitely equal. It is sufficient to
require that the model Reynolds number be merely large enough to render
the drag independent of this N3 parameter itself.

In contrast, the creation of a water anaslogy to the scale of 1 to 10
obliges one to seek (in order to obtain the same Reynolds number) a
velocity which is ten times greater than in the original. But the diffi-
culty inherent in reaching a fluid flow velocity of 7 to 8 m/sec in a
laboratory model is much worse than that of trying to produce a velocity
of 100 m/sec in a wind tunnel. Besides, the experiments on models oper-
ating in an air stream can be performed with very limited apparatus
(inasmuch as such apparatus will have to withstand relatively weak forces)
and thus, in addition, the dimensions can be enlarged. Such advantages
will make the carrying out of the experiments a yet more simple task.

Finally, when one concentrates his attention solely on the inertiel
drag forces, the dimensional aenalogy may be carried out for the case of
a perfect fluid field. In this case, regardless of whether one does or
does not teke into account the Froude number, one can take advantage of
sizably larger changes in velocity by employing air-test models.

6. A single difficulty continues to bedevil the experimenter, and
this blemish is not easily eliminated. This troublesome point arises in
the case when any free surface or surfaces are present. The substantial
difference which exists between the free surfaces present in the two
cases can be explained, from a physical point of view, as follows: The
jet discharge of the air stream occurs in air and the discharge of the
water Jjet takes place likewise in air in the usual case, s0 that the
density p 1s continuous across the free surface (while only the velocity
is discontinuous there) for the former jet, but in the latter setup both
the velocity as well as the density are discontinuous.

7Nevertheless it 1s important in the research we are doing to refrain
from using velocities greater than about 80 to 90 m/sec in order to keep
from surpassing by any appreciable amount the 25 percent-of-sound-velocity
borderline. With regard to this subject the reader's attention is directed
to a recent paper by J. W. Ball, entitled: Model Test Using Low-Velocity
Alr, Proceedings of the American Society of Civil Engineers, June 1951,
Vol. 77, No. T76.
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Pursuing this line of thought further it is seen that when the
water jet discharge takes place in water (as for example, for flow
across a completely submerged orifice) then there is no difference
between the two cases, and the results derived as applying in air hold
in addition for the case of the water flow, and vice versa (N3 being

equal in the two cases).8

But in general, when talking about an air jet immersed in air, the
free surface constitutes an interface which separates the flow into
two distinct regions A and B; in the former the fluid is in motion,
while in the latter it is at rest.

If we now restrict ourselves here to consideration of perfect fluids
in irrotational steady flow, it follows that the actual pressure head is
constant throughout the whole fluid, or

Z + = + — = const.
2g

(with the flow vector being assumed directed along the z-axis) and this
relationship applies validly right on the interface which separates the
two regions.

Now since, p, 7, and =z are continuous across the surface while
Vg 1s zero, then it follows that

2 _
VA = g const.

In other words, the velocity is constant on a free surface in steady
flow (it being taken for granted that the free surface is interpreted
as the interface between the air to air regions), and thus it follows
in addition that the pressure head is also constant.

If one confines himself to examination of two-dimensional motion,
then V 1is constent on the interface between the two regions, and in

addition the stream function V¥ 1is also constant9.

SSee, for exasmple, the results of Zimm: Ueber die Stromungs Vorgange
im freien Iuftstrahl. Forschungsarbeiten VDI, Heft 234, 1921, and those
results obtained by Citrini concerning the spreading of a liquid jet in
L'Energia Elettrica, 1946.

9'I‘he velocity V and the stream function V¥ are constant in the
two-dimensional case even if the motion is rotational.
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It is quite different in the case of a free surface between air and
water. TFor this type of flow, the quantities p, g, and 2z are again
continuous across the interface, but 7y 1is discontinuous. For this
reason one may write that (for irrotational flow of a perfect fluid)

1/ o2 2) _
E("AVA -egVg )+ 2y, - 27 =0

and as a result of dividing through by 7y, and remembering that Vg = O,
it follows that

v
A iz=,8
2g 7
’B
If one now drops out the term ;— inasmuch as the specific weight
A
of air is gbout 1/800 of that of water, then the simple result
2
A
A +2=0
2g

holds.

Thus, in this case, now p = const on the interface; so that,
whereas the pressure head is constant on the interface (or free surface)
between air and air, the pressure is constant on the interface between
water and air. The two cases become identical only when the free surface

is a horizontal planelo.

7. In the case of steady two-dimensional flows one gets YV = const.
in both situations. On this account, if one can set up an air-to-air
model for a steady irrotational two-dimensional flow wherein the interface
is in geometric analogy with the corresponding interface of the original
water-to-air setup, even if only along a very small section of such an
interface, and if the velocitles are moreover in geometric similarity,
then the analogy is vouchsafed to hold throughout the flow field. In

loIf the velocity V is very large along the free surface, then
A

the influence of the change in height 2z 1s very small; in this case
also, therefore, the analogy between the air and water regimes of flow
is approximately admissible.
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fact, in this case the functions V¥ and @ exactly correspond along
the piece of the free surface. But once having the y-function given

equal to the ¢-function or having given the V-function and its normal
derivative, thence, by means of a well-known theorem of Kirchhoff, the

¥ -function is determined throughout the whole flow rie1a1l,

As 1t has been remarked, this correspondence has to be established,
however, on a free surface or on an element of surface immersed in the
fluid - not on a fixed wall, where the condition of no-slip at the wall

contravenes the irrotationality of the flowlz.

8. The conclusion from what has been set forth above is the fol-
lowing: The laws of hydraulic analogy can in general be established
starting out from an inductive or a deductive origin as basis for con-
sideration. In the former case one makes a list (hypothetically) of
all, and only, those factors which are involved in the phenomenon. The
similarity conditions are deduced then by means of the n-theorem, and
these conditions are validated through means of other well-established
theorems. In the second case (the deductive one) the physical factors
which are involved in the phenomenon sppear in the equations which govern
the theory, and with these as a basis the law of gimilarity is formulated
(without it being necessary to bring up the n-theorem in any shape or
manner ). These equations also serve to suggest some very useful tricks.

In the case of the mechanics of fluid flow these tricks have led us
to establishment of the fact that experimentation performed in air on
hydraulic phenomena has a quite wide field of application. Summarizing
the results of sections 4, 5, 6, and 7 we can declare that it is possible
to carry out experiments in air on hydraulic phenomena when one of the
following conditions is conformed to:

1. The Froude and Reynolds numbers analogy is maintained (in other
words the gravitational and viscous effects are taken into account),
when a model is made which has & larger scale than that of the original.

2. The Reynolds number analogy is maintained during a reduction in
scale (relegating to an insignificant role the influence of gravity or
taking it into account by mesns of the artifice mentioned in section L).

3. An analogy based on arbitrary ratios when the liquid can be con-
sidered to be a perfect fluid (teking into account the effect of gravity
by means of the asrtifice mentioned in section k).

llSee Kirchhoff: Mechanik, pp. 187-188; and Almensi: Rendiconti
della Acc. Naz.dei Lincei, Sept. 1, 1907, pp. 865-867.

124, Supino: Sul Moto Irrotazionale dei Liguidi Viscosi, Rendiconti
dells Acc. Naz.dei Iincei, Serie VIII, Vol. VI, p. 615, et seq., Sept. 1,
1949.
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The simlilarity relationship 1s appliceble in all cases where free
surfaces do not enter the problem. When these surfaces are present the
cases in which similarity can be brought into play are discussed in
section 6.

Translated by R. H. Cramer
Cornell Aeronautical Laboratory, Inc.
Buffalo, New York
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into German as Bridgman-Holt, Theorie der physikalischen Dimensionen,
leipsig, 1932.

In addition to this basic test we wish to add the papers of:

F. Marzolo, Alcune Considerazioni sui Modelli Idraulicl, Giornale del
Genio Civile, 191T7.

G. DeMarchi, Omogeneita, Similitudine e Modelli Idraulici, Rendiconti
del Seminario Mat. e Fisico di Milano, 1933.

E. Pistolesi, Omogeneitd, Similitudine, Modelli, "Fondamenti Teorici®
of the Atti del II Conv. di Mat. Applicata, 19L0.

A quite extensive bibliography will be found in:
U. Puppini, Idraulica, Belogna, 1947, pp. 617-618.

While the less recent research work is cited and partly paraphrased
in the book:

Hydraulic Iaboratory Practice, New York, 1929.

Moreover one should consult the various notes of the late Prof.
E. Fdé, contained in the issues of L'Industria, from 1928 to 1929, and
in Politecnico for the years 1929 to 1930 (these articles advance a point
of viiw that is a little different from that brought out in sections 2
and 3).

Other works, in particular the most recent one of J. W. Ball, are
referenced in the notes appended to the bottoms of the pages.



NACA T™ 1359

20

30°

\\
\‘
20° 25°

N,
~—~—_
10°

15°
Temperture ,t, deg Centigrade

~
L

o
o
®) w o

Te] <

~ o
O1x,4/4 ‘310 0} J3jOM JO A}1800SIA  d1jpwduly Jo OlDY
gOix 4 ‘3D J0 puUD‘gOIx ‘13j0m JO AYSOISIA dDWAULY

150

200
.00

Figure 1




NACA TM 1359

10

o
N
o
H
o
(0))
(o]
@
o

100

Figure 2.- Froude number analogy.
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Figure 3,- Reynolds number analogy Hvl = E'z_' (The symbols
v

differentiated by primes refer to the “air” conditions, while the
unmarked ones relate to the water case., The Upgx velocities
are calculated to correspond toa U' value of 50 m.sec.)
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